An Identity of Jack Polynomials
نویسندگان
چکیده مقاله:
In this work we give an alterative proof of one of basic properties of zonal polynomials and generalised it for Jack polynomials
منابع مشابه
A Normalization Formula for the Jack Polynomials in Superspace and an Identity on Partitions
We prove a conjecture of [3] giving a closed form formula for the norm of the Jack polynomials in superspace with respect to a certain scalar product. The proof is mainly combinatorial and relies on the explicit expression in terms of admissible tableaux of the non-symmetric Jack polynomials. In the final step of the proof appears an identity on weighted sums of partitions that we demonstrate u...
متن کاملJack polynomials in superspace
This work initiates the study of orthogonal symmetric polynomials in superspace. Here we present two approaches leading to a family of orthogonal polynomials in superspace that generalize the Jack polynomials. The first approach relies on previous work by the authors in which eigenfunctions of the supersymmetric extension of the trigonometric Calogero-Moser-Sutherland Hamiltonian were construct...
متن کاملAn Analytic Formula for the A 2 Jack Polynomials 3 3 Separation of variables for Jack polynomials
In this letter I shall review my joint results with Vadim Kuznetsov and Evgeny Sklyanin [Indag. Math. 14 (2003), 451–482] on separation of variables (SoV) for the An Jack polynomials. This approach originated from the work [RIMS Kokyuroku 919 (1995), 27–34] where the integral representations for the A2 Jack polynomials was derived. Using special polynomial bases I shall obtain a more explicit e...
متن کاملJack polynomials and free cumulants
We study the coefficients in the expansion of Jack polynomials in terms of power sums. We express them as polynomials in the free cumulants of the transition measure of an anisotropic Young diagram. We conjecture that such polynomials have nonnegative integer coefficients. This extends recent results about normalized characters of the symmetric group. 2000 Mathematics Subject Classification: 05...
متن کاملOrthogonal Functions Generalizing Jack Polynomials
The rational Cherednik algebra H is a certain algebra of differential-reflection operators attached to a complex reflection group W and depending on a set of central parameters. Each irreducible representation S of W corresponds to a standard module M(λ) for H. This paper deals with the infinite family G(r, 1, n) of complex reflection groups; our goal is to study the standard modules using a co...
متن کاملFrom Jack to Double Jack Polynomials via the Supersymmetric Bridge
The Calogero–Sutherland model occurs in a large number of physical contexts, either directly or via its eigenfunctions, the Jack polynomials. The supersymmetric counterpart of this model, although much less ubiquitous, has an equally rich structure. In particular, its eigenfunctions, the Jack superpolynomials, appear to share the very same remarkable combinatorial and structural properties as t...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 11 شماره None
صفحات 87- 92
تاریخ انتشار 2012-03
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023